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Abstract

Context: Software security testing aims to check the security behaviour of a

program. To determine whether the program behaves securely on a particular

execution, we need an oracle who knows the expected security behaviour. Secu-

rity test oracle decides whether test cases violate the intended security policies

of the program. Thus, it is necessary for the oracle to model the detailed se-

curity policies. Unfortunately, these policies are usually poorly documented.

Even worse, in some cases, the source code is the only available document of

the program.

Objective: We propose a method to automatically extract the intended se-

curity policies of the program under test from the source code and expected

execution traces. We introduce a security test oracle, Athena, which utilises

these policies to differentiate between the secure and potentially insecure be-

haviour of the program.

Method: We use a hybrid analysis approach to obtain the intended security

policies. We investigate the program statements (gates) in which the software

communicates with the environment. We analyse the transmitted messages in

the gates and the control and data flow of the program to extract some security

properties. Moreover, we specify the intended navigation paths of the program.
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These properties and paths form the expected security policies. Athena utilises

these policies to detect potential security breaches.

Results: Investigating common types of software vulnerabilities illustrates the

flexibility of Athena in modelling various kinds of security policies. Moreover,

we show the usefulness of the method by applying it to the real web applications

and evaluating its capability to detect actual attacks.

Conclusions: Our proposed approach takes a step towards solving the test

oracle automation problem in the domain of security testing.

Keywords: Software Security, Test Oracle, Vulnerability Analysis

1. Introduction

Software testing is defined as “a way to verify whether the system under test

behaves in accordance with its specification through a controlled execution” [1].

It consists of selecting test cases, running the program under test, and examining

the outputs [2]. The mechanism that examines the output and determines

whether the system under test behaves correctly on a particular execution is

called a test oracle [3, 4].

In contrast to software testing, “Security testing identifies whether the spec-

ified or intended security features are implemented correctly” [5]. Software

security testing and software testing take the same steps, but they examine

the program behaviour from two different perspectives. Security testing mecha-

nisms examine the program to determine whether the system under test behaves

securely (rather than correctly in the software test). For this purpose, analysers

need a security test oracle. The security test oracle problem can be defined as

the challenge of distinguishing between the desired secure behaviour from the

potentially insecure behaviour of the program.

The main challenge of developing a complete test oracle, in general, is to

generate expected behaviour automatically [6]. Complicated requirements of

automated test oracle generation cause most analysers to provide expected val-

ues manually [7]. Thus, the test oracle problem inhibits greater progress in
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automated testing methods and tools [8]. Although there have been some re-

search efforts to overcome the odds, the problem of constructing automated or

semi-automated oracles is open [1, 9, 10].

In this paper, we propose a framework to extract the expected security

behaviour of programs automatically. This behaviour forms the basis of the

security test oracle.

As stated by Avancini and Ceccato [11], a security test oracle checks whether

security test cases actually expose application vulnerabilities. A software vul-

nerability is defined as an instance of a software mistake such that its execution

can violate the explicit or implicit security policy [12]. Accordingly, security

test oracle should determine whether test cases violate the intended security

policies of the program. Therefore, it is necessary for the security test oracle to

model the detailed security policies.

Unfortunately, security policies are often stated in general terms such as

confidentiality, integrity, and availability [13]. Since the policies are specified in

abstract terms, it is difficult in practice to investigate whether a security breach

occurs.

Moreover, each program may have its specific security policies and require-

ments, which are not well documented. Specifically, it is common when we

use Agile software development methodology or reuse an open source software.

In this case, the source code may be the only available document to describe

software properties. Therefore, it would be a valuable strategy to extract the

intended security policies from source code instead of design models such as

UML diagrams.

However, investigating the source code on its own is not sufficient to extract

the expected security policies. When we reuse an open source component to

utilise some of its specific features, some unnecessary features and codes may be

inadvertently imported to our program. Thus, we need to execute our intended

use case scenarios to ensure that the extracted policies are compatible with our

real needs.

In this paper, we use a combination of static and dynamic analysis to ob-
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tain the detailed security policies of programs. We identify the source code

statements that are used as contact points between the program and environ-

ment. We call these points the gates. We employ the normal data-flow and

the expected user privileges to extract the security properties of each gate. We

also run the program using expected inputs and extract the normal execution

paths. The security properties of the gates, in addition to the normal control

flow of the program, represent the correct security behaviour of the program.

This behaviour forms the basis of the security test oracle. Any test case which

is not compliant with the oracle is considered exploitation because it violates

the intended security policies.

We call our framework Athena (the goddess of wisdom who protects the

Athena city) because it is a wise protector of the software city. Athena checks

the gates and reports any abnormal security behaviour.

Briefly, our framework extracts the security policies automatically, then uses

these policies to distinguish between secure and potentially insecure behaviour.

Accordingly, we evaluate our approach in two ways: I) We demonstrate how the

most common security policies can be extracted by Athena; II) We show the

effectiveness of the implemented oracle by applying it to real applications and

measuring its accuracy in detecting actual attacks.

The rest of this paper is organized as follows. Section two surveys related

work. Section three defines the normal security behaviour and the security test

oracle. In the fourth section, we propose a method to automatically extract

security test oracle from source code and program execution traces. The fifth

section illustrates the implementation. A simple running example is provided in

section six. Section seven describes some empirical case studies to demonstrate

how the framework can be applied to programs to model the most important

security policies. We apply our method to the real applications and demon-

strates the feasibility and usefulness of the proposed approach in section eight.

Section nine discusses some issues of using security test oracle. Finally, section

ten concludes the paper and describes our future work.
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2. Related Work

While there are many methodologies for test case generation [14] and security

test case generation [15, 16, 17, 18, 19, 20, 21], the test oracle problem is still

an open issue [1]. In the last decade, techniques to automatically generate test

oracles have attracted a lot of attention [22]. Although there exist some research

efforts to automate the test oracle construction [6, 7, 23], less attention is paid

to develop a security oracle [11].

Some software vulnerability analysis methods such as [24] use system crash

as an implicit oracle. Further, the basic idea of fuzzing is to stress a program to

find crashes which are interpreted as faults or errors [25]. Some other security

testing methods check if the attack string used as an input is repeated in the

output. For example, in [26], the oracle examines whether a web page contains

the same JavaScript statement used in the corresponding test case. However,

Li and Offutt’s experiment [7] showed that testers should check more of the

program state than just runtime exceptions. Furthermore, Staats et al. [27]

claimed that considering internal state information in test oracles can improve

the power of testing.

Automated dynamic web vulnerability scanners assess the application un-

der test in three phases: crawling, generating specially-crafted inputs (attacks),

and response analysis. Their analysis module analyses the HTTP responses

returned by the web application in response to the attacks launched by the

attacker module to detect possible vulnerabilities. For example, if the page re-

turned in response to the SQL injection test vector contains a database error

message, the analysis module infers the existence of this vulnerability. Obvi-

ously, black-box testing is not capable of precisely keeping track of the state

of the application [28]. Moreover, dynamic scanners fail to detect application-

specific vulnerabilities [28]. Furthermore, they may have trouble linking a later

observation with the earlier injection event [29].

Srivastava and his colleagues’ paper [30] is one of the first researches that

introduces the concept of security test oracle. The key idea is to use any incon-
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sistency between implementations of the same API as a security policy oracle.

Their method takes an API and multiple implementations of it, definitions of

security checks, and security-sensitive events as inputs. They investigate the

required security checks before reaching security-sensitive events. If the given

implementations vary in the security checks, their method will detect and re-

port the inconsistency. This approach may produce false negatives if the same

semantic bug occurs in all implementations of a system under test. Moreover,

the assumption of the existence of multiple independent implementations of the

same API, cannot be extended to all software components.

Avancini and Ceccato [11] have proposed a security oracle for Cross-Site

Scripting vulnerabilities. They collect HTML pages in safe conditions and con-

struct the safe model of the application under test as an oracle. An input is

classified as an attack if the corresponding response page violates the safe model.

In [31], tree kernel methods have been used to train a classifier as a security

oracle. In this approach, the expected parse trees of HTML response pages are

constructed based on the results of a learning phase. The learning phase contains

attacks and safe executions as negative and positive examples respectively. A

web page is represented by the parse tree of the corresponding HTML code.

Thus, if an input leads to an HTML response which is inconsistent with the

expected parse tree, the attack will be detected.

In [32], a new tool called Circe has been introduced for XSS testing. The

oracle construction phase of this tool encompasses three steps: test case per-

turbation, parse tree abstraction, and abstraction merge. A set of test cases

is generated using mutation operators and concrete symbolic execution. The

program under test is executed using these test cases. The response pages are

collected and parsed. The details of parse trees are removed. Finally, The

safe model is constructed by combining the abstract parse trees. In the testing

phase, any new input that does not satisfy the safe model will be classified as

code injection.

Bozic et al. [33] have proposed a method to generate test cases for exploiting

XSS vulnerabilities. Their system includes an oracle that detects XSS attacks.
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Obviously, their oracle cannot be generalized to detect other kinds of vulnera-

bilities. As a future work, they point out the oracle problem. They have also

mentioned that a better oracle can lead to better test results.

Another approach for security analysis is to find vulnerabilities statically in

the code, rather than testing the program dynamically. These methods specify

wrong things rather than correct ones. They search for the predefined bug

patterns in the code. This method has been applied to software bug detection

[34] and security vulnerability analysis [35, 36]. This technique requires well-

defined patterns that can be applied to various contexts. Otherwise, they are

exposed to a high false positive rate. Moreover, these patterns do not capture

context-specific semantics. Thus, they inherently suffer from the problem of

missing vulnerabilities that violate a unique policy.

In conclusion, a few papers specifically deal with the security test oracle prob-

lem. Most of these researches consider only particular vulnerabilities. Moreover,

there exist some security testing methods that capture program crashes to ver-

ify the test results. This approach is not sufficient to detect various security

vulnerabilities because an attack may have other consequences rather than a

system crash. Generally, the methods that do not consider the context-specific

semantics of the program or internal program states will be incapable of de-

tecting lots of vulnerabilities. In the next section, we propose a framework that

models the expected security behaviour of programs considering these issues.

This behaviour is extracted from source code and intended applications of the

program. Thus, it is not required to access the design-level documents of the

system. Moreover, we do not need to have multiple implementations of the

system under test.

3. Athena Framework

Figure 1 provides an overview of the Athena framework. It extracts the

expected normal security behaviour of a program using static and dynamic

analysis. It also specifies the security behaviour of program on any particular
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Figure 1: Athena framework

execution. This behaviour is compared with the expected one. Any deviation

from normal behaviour is reported as a potential attack. The most important

part of Athena framework is the model of security behaviour. In the remainder

of this section, we define this model.

The program may have different behaviour when it is run by different users.

Moreover, the environment in which the program is executed may affect the

behavioural analysis. Therefore, we define the security behaviour of a program

considering its environment and the user who runs it.

Definition 1. Security behaviour of program P utilised by user type u in envi-

ronment e is denoted by P e
u and defined as a 6-tuple P e

u =< G, p0, pf , A, S,M >

where G is a finite set of all gates or channels used by program to communicate

with the environment, p0 ∈ G and pf ∈ G are the initial and final gates (entry

and exit points) of the program respectively, A is a set of arcs A ⊆ G×G that

connects gates, entry point, and exit point to each other, S is a finite set of

security properties, and M is a multivalued function M : G→ S which declares

security properties of gates.

If P e
u is extracted from expected interactions between u and P , we call it

normal security behaviour and denote it by NP e
u .
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In the above definition, gates are the points where the program communi-

cates with the environment. More precisely, a program statement is a gate if and

only if it reads from, writes to, or executes on an environmental resource. Each

gate may have some security properties that specify how the program accesses

the environment resources from that gate. We define the security property as

follows:

Definition 2. A security property S is defined as a triple S =< A, O, C >

where

• A is an access type specified based on the resource usage;

• O is an object accessed by the program;

• C is a collection of conditions that should be met to gain access to the

object.

Conditions can be divided into three categories: direct, indirect and local,

which are called Cdir, Cind, and Cloc, respectively. More formally, C = Cdir ∧

Cind ∧ Cloc. These categories are described as follows:

• Direct conditions, Cdir, specify whether the communications through the

current gate directly depend on the result of communications in other

gates. For example, if an input, I, is used as an argument, arg, of an

output gate, the condition arg = I will be a direct condition for the

output gate.

• Indirect conditions, Cind, are the gate-dependent statements in the code

that should be satisfied to reach the current gate. For example, if an input,

I, is checked against a constant, C, in a conditional program statement

before reaching a database gate, the condition I = C will be an indirect

condition for the database gate.

• Other conditions are classified as local conditions, Cloc. These conditions

may vary, depending on the gate types. Access time and buffer length are

9



two examples of local conditions which are used in the security properties

of database and memory gates respectively. These conditions may be

specified manually or automatically. For example, analysers should specify

the access time manually if it is required. However, buffer length can be

automatically obtained from source code.

For example, assume that the program includes a gate (statement) for commu-

nicating with the file system. Here is a simple security property that may occur

in the gate: reading (access type) from the file ”X” (object) is permitted if the

access is requested in the work hours and the user is authenticated (conditions).

Security test oracle is an entity who knows the secure behaviour of the

program. Thus, we can define the security test oracle as the union of all normal

security behaviour of the program.

Definition 3. The Security Test Oracle (STO) of program P in the environ-

ment E is denoted by STOE
P and defined as follows:

STOE
P =

⋃
∀uti∈UT ;∀r∈E

NP r
uti

Where UT (abbreviation of user type) encompasses all possible types of benign

users including guest ones.

For each test case, the security test oracle should specify whether it is an

exploit. We say that a program is exploitable if there exist some inputs so

that executing the program using these inputs leads the program to behave

insecurely. The insecure behaviour of a program is an anomaly or an attack.

Based on definition 1, we can define attack as a violation of security properties

of a gate or an unauthorized deviation from the normal flow of the program.

Athena traces the execution path of the program and checks the security

properties of the gates to specify whether it is an exploit. Deviation from the

normal flow of the program or violation of security properties of the gates will

be reported as a potential attack.

10



4. Extracting Security Test Oracle

We use a hybrid approach, a combination of static and dynamic analysis,

to extract security test oracle from the program. First, the analyser executes

the intended use case scenarios to collect dynamic information. Next, the Inter-

procedural Control Flow Graph (ICFG) and Data Flow Graph (DFG) are ex-

tracted from the source code. The test oracle is constructed by combining these

graphs with dynamic information. In this section, we explain these processes in

more detail.

As mentioned above, the first step of constructing the oracle is collecting the

dynamic information. This information includes the execution paths and the

gate messages. We use coverage analysis tools to trace the paths. Moreover, we

instrument the program to capture the messages transmitted via the gates.

A gate is a method by which the program communicates with the envi-

ronment. For example, executeQuery is a database gate in Java programming

language. Each gate is defined by the method signature and its parameters

that should be captured. We store gate definitions in a text file. Athena uses

these definitions to instrument the program. To log the gate messages, the

instrumented program is executed using normal test cases.

Normal test cases are the inputs and execution conditions that form the

benign (non-malicious) use of the program. These test cases can be specified

by the analyser based on the expected use case scenarios. In this case, normal

test cases are being used as a proxy for use case scenarios. There are some

techniques [37] to extract test cases from use cases. There are also lots of test

case generation methods surveyed in [14]. We do not investigate these methods

because generating test cases is beyond the scope of the paper. However, we

put forward the two following suggestions.

If you download an open source component or use a third-party applica-

tion, we suggest using expected scenarios to construct the oracle. For example,

assume that you download an open source software that handles the authen-
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tication process using the RBAC1 approach. The program specifies a default

password for the super-user (in addition to the admin) role. Super-user can

perform some critical tasks such as backing up the keys stored in the database.

However, you never assign this role to the users. You do not even expect the

program to carry out this task. Thus, there exist some paths in the program

that are never used in your application but can be used by other companies and

applications. In this case, we recommend that each company use its intended

use case scenarios to construct the oracle. By contrast, if you want to extract

the oracle from your self-developed program, it will be possible to use other

test case generation methods, in addition to the previous one. In this case, the

analyser can repeatedly execute the program by different test cases until the

prime-path coverage criterion [38] is satisfied.

During program execution, the coverage analysis tool traces the paths and

generates the coverage report. Simultaneously, the gate messages are logged in

appropriate files. This information is passed to the following pseudo-code. The

algorithm takes the source code, coverage report, logged messages, and man-

ual local conditions and generates a graph that represents the normal security

behaviour of the program.

Inputs : s r c f i l e s , cov rpt , gate msgs , man con

Output : normalModel

Function :

// 1 . Extrac t parse t r e e from source code

ParseTree [ ] parseTrees = new ParseTree [ s r c f i l e s . l ength ] ;

for ( i = 0 ; i < s r c f i l e s . l ength ; i++)

parseTrees [ i ]= Parser ( s r c f i l e s [ i ] ) ;

// 2 . Generate CFGs

// V i s i t a l l nodes in the parse t r e e and bu i l d CFG for a l l methods

ControlFlowGraph [ ] c f g s = new ControlFlowGraph [ s r c f i l e s . l ength ] ;

for ( i = 0 ; i < s r c f i l e s . l ength ; i++){

Contro lF lowVis i tor c f g v i s i t o r = new Contro lF lowVis i tor ( ) ;

1Role Based Access Control
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c f g v i s i t o r . v i s i t ( parseTrees [ i ] ) ;

c f g s [ i ] = c f g v i s i t o r . getGraph ( ) ;

}

// 3 . Generate DFG

// V i s i t a l l nodes in the parse t r e e and f ind a l l def−use pa i r s

DFNode [ ] dfNodes = new DFNode [ s r c f i l e s . l ength ] ;

for ( i = 0 ; i < s r c f i l e s . l ength ; i++){

DefUseVis i tor duv i s i t o r = new DefUseVis i tor ( ) ;

d uv i s i t o r . v i s i t ( parseTrees [ i ] ) ;

dfNodes [ i ] = duv i s i t o r . getDFNodes ( ) ;

}

// Traverse c f g s in a depth− f i r s t manner and connect d e f s to uses

DataFlowGraph [ ] d fg s = new DataFlowGraph [ s r c f i l e s . l ength ] ;

for ( i = 0 ; i < s r c f i l e s . l ength ; i++){

de fuseTraver se ( d fg s [ i ] , c f g s [ i ] , dfNodes [ i ] ) ;

// 4 . Generate ICFG

// V i s i t a l l nodes in the parse t r e e and f ind a l l f unc t i on c a l l s

ControlFlowGraph i c f g = new ControlFlowGraph ( ) ;

Map callMap = new Map<Node , Ca l l e e s >;

for ( i = 0 ; i < s r c f i l e s . l ength ; i++){

ICFGVisitor i c f g v i s i t o r = new ICFGVisitor ( ) ;

i c f g v i s i t o r . v i s i t ( parseTrees [ i ] ) ;

callMap . add ( i c f g v i s i t o r . getCal lerCal leeMap ( ) ) ;

}

// Add each c f g to the i c f g graph

for ( ControlFlowGraph c f g : c f g s )

i c f g . addGraph ( c f g ) ;

// Add func t ion c a l l edges to the i c f g

for (CFGNode node : i c f g )

for (CFGNode c a l l e e : callMap ( node ) ) {

i c f g . addEdge ( node , c a l l e e , label .CALLS) ;

i c f g . addEdge ( c a l l e e . ex i tPo in t ( ) , node , label .RETURN) ;

}

// 5 . Generate normal model

// Generate a graph conta in ing i c f g and d fg informat ion
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oracleGraph normalModel = new oracleGraph ( i c f g , d fg s ) ;

// Traverse the graph and remove uncovered nodes and edges

s l i c i n g ( normalModel , cov rpt ) ;

// Traverse the graph , e x t r a c t condi t ions , and add them to model

ex t rac tCond i t i on s ( normalModel , gate msgs , man con ) ;

The main steps of the algorithm are: Extracting the program parse tree from

source code; Extracting the control and data flow graphs from the parse tree;

Combining the dynamic analysis results with these graphs to form the oracle.

We use a parser to obtain the parse tree. Control and data flow graphs are

directly extracted from the parse tree. We visit all statements in the source code

and create appropriate nodes and edges of the graphs. Ammann and Offutt [38]

have described this procedure in detail. In the remaining of this section, we

explain the last step of the algorithm, generating the normal model.

As described in definition 1, program gates form the nodes in the P e
u model.

To determine which nodes should be connected to each other in the normal

model, we utilise the coverage report. The ICFG nodes and edges which are

visited during program execution are marked. Each visited node that contains

a gate definition makes a node in the NP e
u model. Every subpath that connects

two visited gates in the ICFG is modelled as an arc in the normal program

behaviour. If there are two gates in the same node of the ICFG, they will be

connected by an ε arc. We also add two empty nodes p0 and pf to the model as

mentioned in definition 1. All initial and final gates are connected to the initial

and final places respectively.

After constructing the basic structure of the model, we should specify the

security properties of the gates as described in definition 2. For each gate, the

conditions are extracted as follows:

• Indirect conditions are the conditional statements that their variables de-

pend on an environmental variable received from a prior gate. We name

these statements effective conditional statements. All satisfied effective

conditional statements, from the start node to the current gate, are cu-

mulatively collected and saved in the last edge before reaching the gate.
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In other words, we specify which effective conditions should be met to

reach a gate.

To decide whether a conditional statement is an effective one, we bene-

fit from the DFG. We follow the program execution path and register all

variables that their values depend on the communications on the gates.

If the variable used in the conditional statement depends on an environ-

mental variable, the condition will be effective. Thus, it will be saved

as an indirect condition in all the subsequent gates in the corresponding

path of the ICFG except when there exists a new definition of the variable

that changes the dependency relation in the rest of execution path. For

example, suppose that v is an input variable of gate g1 which is used in a

conditional statement C1 before reaching gate g2. Statement C1 is saved

in Cind of gate g2.

• direct conditions specify the data dependencies between variables used in

the current gate and the variables used in the earlier gates. Similar to the

method used to construct Cind, we use DFG to form the Cdir. If an input

variable which is received by the program in a gate affects some other

gates, it should be stated in the security properties of those gates. Thus,

all variables that are entered from the environment through the gates and

are ancestors of the target variable in the graph form the direct condition

set. This will help us to detect some kinds of taint flows.

• The local conditions are extracted from the gate message logs or specified

by the analyser. As mentioned in section 3, security properties should be

specified based on the gate type. For example, a simple security property

of an output gate may exclude the <script> tags. By contrast, the security

property of a database gate may describe authorized queries. Since there

are different types of gates, we provide developers with various mechanisms

to extract the local conditions. In the current implemented version of the

framework, the available mechanisms are searching the message content,

obtaining the message length, evaluating Javascript, and extracting the
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parse tree of the strings that their ANTLR grammars are available. We

will try to add more capabilities in the future implementation. More

details about extracting different kinds of local conditions for various gate

types will be presented in section 7.

These properties in addition to the gate connections construct normal security

behaviour of the program under test.

5. Implementation

We implemented our proposed method to extract security test oracle from

programs written in Java programming language. Figure 2 shows the whole

process of oracle extraction. The third party tools that we use in our imple-

mentation are also demonstrated in the figure.

In the first step of the static analysis phase, we extract the parse tree from

source code. We use ANTLR2 [39] for this purpose. “ANTLR is a powerful

parser generator for reading, processing, executing, or translating structured

text or binary files3.” Since we implement our framework for Java programs,

we utilise the Java grammar4 to generate the parser.

ANTLR automatically generates parse-tree walker in the form of visitor

pattern. We develop a program which uses this walker to extract the ICFG and

DFG from Abstract Syntax Tree (AST). Our program is designed to operate

at the source code level rather than byte-code level. Thus, “the high-level

abstractions are not compiled away during the translation to intermediate code”

[40]. Consequently, the results would be more understandable.

In the dynamic analysis phase, we use OpenClover5 code coverage tool to

specify how the code statements are covered during program executions. We

develop a Java program that parses the coverage reports and combines this

2ANother Tool for Language Recognition
3http://www.antlr.org
4https://github.com/antlr/grammars-v4
5http://openclover.org
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information with the ICFG graph as mentioned in the previous section. Our

implementation can also parse the reports of CodeCover6 glass-box testing tool.

In the future implementation we will try to support more dynamic tracing tools

such as Cobertura7 and JaCoCo8.

In addition to the execution paths, we should log the gate messages. We

instrument the program using logging aspects to collect these messages. Logging

aspects “define the interception points needing logging and invoke the logging

API upon the execution of those points” [41]. The program under test and the

logging aspects are compiled by AspectJ. As a result, these aspects are woven

into the program to specify where and how to log the messages.

Although it is possible to use a set of predefined logging aspects, it is not a

rational approach to framework designing because I) the predefined set may be

incomplete and therefore some required messages are missed; II) the analyser

may want to investigate a set of specific gates and hence he does not need to

capture other messages. For these reasons, we provide a mechanism that enables

analysers to extend or customize the predefined list.

We develop a component, AspectGenerator, to automatically produce log-

ging aspects. AspectGenerator uses gate definitions to produce the aspects.

Each gate definition contains the method signature and the parameter position

that should be captured during program execution. Gate definitions are intro-

duced in the text files called gate lists. AspectGenerator reads the lists and

automatically generates appropriate advice9 for each gate to log the value of

the specified parameter.

We have collected a list of commonly used Java gates and stored them in the

appropriate text files such as DBGates and InputGates. The analysers can use

the default lists or modify them to suit their needs. For example, the analyser

6http://codecover.org/index.html
7http://cobertura.github.io/cobertura
8http://www.jacoco.org/jacoco
9In the aspect-oriented programming, an advice is a code to be executed when a join point

is reached in the application code [42].
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can add a new method signature to the text file and specify the parameters that

he wants to capture. AspectGenerator reads the specified gate declaration and

automatically produces appropriate aspect. AspectJ weaves this aspect into the

program. Thus, the messages transmitted via the gate will be captured during

the program execution.

This strategy is invaluable to analysers, particularly when the system under

test uses a third party library that has its own customized gates. Moreover, if

a new vulnerability is reported in a specific gate or a new vulnerable library

is used in the program, it will be possible to log its suspicious messages. In

addition, the analyser can exclude the gates if he does not want to model all

kinds of security policies.

The dynamic reports are combined with the static analysis graphs using the

Java program developed by the authors. This program constructs the security

test oracle as described in the previous section.

6. Running Example

In this section, we illustrate how the security test oracle is extracted from

source code by a simple running example. Following code snippet is a Java

method implemented in the ’CWE89 SQL Injection Environment execute 01’ test

case in Juliet [43] test suite for Java10 with a few slight modifications:

1 public class CWE89 SQL Injection Environment execute 01 extends

AbstractTestCase {

2 public void bad ( ) throws Throwable{

3 St r ing data ;

4 data = System . getenv ( ”ADD” ) ;

5 Statement sq lStatement = null ;

6 try{

7 dbConnection = IO . getDBConnection ( ) ;

8 sq lStatement = dbConnection . createStatement ( ) ;

10https://samate.nist.gov/SRD/testsuite.php
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9 Boolean r e s u l t = sqlStatement . execute ( ” i n s e r t i n to u s e r s (

s t a tu s ) va lue s ( ’ updated ’ ) where name=’”+data+” ’ ” ) ;

10 i f ( r e s u l t )

11 IO . wr i t eL ine ( ”Name, ” + data + ” , updated s u c c e s s f u l l y ”

) ;

12 else

13 IO . wr i t eL ine ( ”Unable to update r e co rd s f o r user : ” +

data ) ;

14 }

15 catch ( SQLException exceptSq l ) {

16 IO . l o gg e r . l og ( Leve l .WARNING, ”Error g e t t i n g database

connect ion ” , exceptSq l ) ;

17 }

18 }

19 }

Athena extracts the control and data flow graphs of this method. These graphs

are depicted in figure 3. Bold and dashed lines show the control and data flows

respectively.

The source code has an input gate, ’System.getenv’, and a database gate,

’Statement.execute’. For simplicity, assume that we do not consider other types

of gates in this analysis. Thus, the nodes number 4 and 9 construct the basic

structure of NP e
u . We name the gates G1 and G2 respectively.

Athena also generates logging aspects. Since the mentioned gates have

been declared in the default gate definition files, the corresponding aspects are

automatically generated by AspectGenerator component. For example, ’Sys-

tem.getenv’ is declared in InputGates.txt as follows:

St r ing java . lang . System . getenv ( St r ing ) ; −1

-1 in the mentioned declaration states that the return value of the method should

be logged. AspectGenerator automatically generates the following advice for

this gate:

a f t e r ( ) r e tu rn ing ( S t r ing argValue ) : c a l l ( S t r ing java . lang . System .

getenv ( St r ing ) ) && ! with in ( InputGates Aspect ) {
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2:  void bad()

3:  String data

4:  data = System.getenv(’ADD’)

5:  Statement sqlStatement = null

9:  Boolean result = sqlStatement.execute(’insert into users (status) values (’updated’) where name=’’+data+’’’)

 (data)

11:  IO.writeLine(’Name, ’ + data + ’, updated successfully’)

 (data)

13:  IO.writeLine(’Unable to update records for user: ’ + data)

 (data)

6:  try

7:  dbConnection = IO.getDBConnection()

end-try

15:  catch (SQLException exceptSql)

Throws

8:  sqlStatement = dbConnection.createStatement()

 (sqlStatement)

10:  if (result)

 (result)

True False

endif

end-catch

16:  IO.logger.log(Level.WARNING, ’Error getting database connection’, exceptSql)

Figure 3: CFG and DFG of the running example
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St r ing s t a t i c I n f o = ge tS t a t i c J o i nPo i n t I n f o (

th i s Jo i nPo in tS t a t i cPa r t ) ;

new F i l e ( ” . / AspectsLoggedMessages ” ) . mkdirs ( ) ;

S t r ing f i l ePathtoSaveMessageLog = ” . / AspectsLoggedMessages /”

+ s t a t i c I n f o . sub s t r i ng (0 , s t a t i c I n f o . indexOf ( ” ; ” ) ) . tr im

( ) + ” . txt ” ;

try{

Fi l eWr i t e r fw = new Fi l eWr i t e r ( f i lePathtoSaveMessageLog ,

true ) ;

fw . wr i t e ( s t a t i c I n f o . sub s t r i ng ( s t a t i c I n f o . indexOf ( ” ; ” )+1)

+ ” ; ” + argValue + ”\n” ) ;

fw . c l o s e ( ) ;

}

catch ( IOException i o e ) {

System . e r r . p r i n t l n ( ” IOException : ” + i o e . getMessage ( ) ) ;

}

}

The aspects are woven into the program by AJC compiler. The woven code

is executed using normal intended test cases. For instance, in this example,

we set ADD = Homaei and ADD = Hossein in the system environmental

variables. These two configurations are used to represent intended scenarios for

two user-types Ulocal and Uguest respectively. OpenClover traces the program

execution and generates an HTML report. Athena parses this report and marks

the covered nodes and edges. For example, when the program is run by Ulocal,

the node number 13 will not be visited. In figure 3 we depict this scenario. The

unvisited entities of the CFG are marked with grey colour.

The next step in the modelling process is to determine the security properties

of the gates. This involves specifying Cdir, Cind, and Cloc.

In the running example, the variable ’data’ should be mentioned as an input

dependent variable in the node number 9 because it depends on an input gate

variable. Thus, the Cdir contains the condition data = G1.data. Athena traces

the DFG to extract this property.

The conditional statement in the node number 10 contains variable result
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P0

(G1)	4:  data = System.getenv(’ADD’)

(G2)	9:  Boolean result = sqlStatement.execute(’insert into users (status) values (’updated’) where name=’’+data+’’’)

A=insert
 O={users[status]}

 C(dir)={data=G1.data}
 C(loc)={Match the parse tree}

Pf

C(ind)={result=true}

Figure 4: Security test oracle of the running example

which depends on the communications on the database gate. In other words, it

is an effective conditional statement and therefore should be saved as an indirect

condition in the following nodes. Thus, the Cind of Pf is result = true.

Local conditions are extracted from the logged messages of the gates. Each

gate may have some specific properties based on the gate type. The details of

these properties will be explained in section 7. Since G2 is a DB gate, its security

properties should specify the allowed queries. Athena reads the logged message

of G2 and combines the obtained information with the DFG information to

extract the symbolic mode of the executed query.

For the mentioned example, the logged message in G2 is ”insert into users

(status) values (updated) where name=Homaei”. Athena knows that data=

G1.data by exploring DFG flows. Moreover, she knows that G1.data= Homaei

by investigating the logged message in G1. Thus, she replaces the concrete value

’Homaei’ with its symbolic value data. In other words, the symbolic query ex-

ecuted in G2 is ”insert into users (status) values (updated) where name=data”.

The current version of Athena supports parsing SQL queries. Athena parses the

obtained query and specifies the access type and the accessible objects. Figure 4

depicts the security test oracle of the running example. The security properties

of the gates are represented in the left side of the corresponding nodes for better

visualization.

Athena monitors the program execution and compares the real and expected

properties. Using the oracle as an executable specification form, we can follow

the same execution path in the oracle and report every violation. In other words,
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we do not need a separate comparator. Instead, we follow the oracle paths based

on the recorded actual paths and verify whether the test case is passed based

on the security properties of the gates.

For example, assume that a user type Uguest attacks the program through

passing the condition if(result) in the node number 10 of the CFG. In this

case, the dynamic behaviour of the program violates the specified security policy,

NP e
u . The oracle forces the result variable to be equal to true at Pf . However,

the actual value of this variable in the running example is equal to false. Thus,

Athena detects the conflict and reports the violation. Moreover, SQL injections

are detectable by Athena. If an injection occurs, the actual parse tree of the

query will not match the expected one in G2. The details of detecting common

types of attacks, including SQL injection, will be demonstrated in the next

section.

7. Case Studies

An acceptable framework of security test oracle should be capable of mod-

elling different types of security policies to detect various kinds of breaches. In

this section, we demonstrate how Athena model the security policies that should

be pursued to protect software against the most common software vulnerabili-

ties [44]. We show that the security policies which are automatically extracted

by Athena can be used to detect common types of attacks.

Note that although we introduce some detection mechanisms in this section,

analysers can also develop their own methods using our framework. For example,

one developer may prefer to use only the static information and develop a taint

flow analysis whereas another developer may use a hybrid approach to alleviate

the conservative static analysis problem.

7.1. SQL Attacks

7.1.1. SQL injection

SQL injections are malformed inputs that inject unexpected values into

database gates. These inputs make it possible to get impermissible access to the
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database. To detect SQL injections, the security property of each database gate

should specify the allowed queries. Any access control violation in a database

gate illustrates an attack.

Obviously, there may be lots of permitted queries in each gate. Since dy-

namic learning does not guarantee the completeness of the model, there is little

likelihood that the normal behaviour encompasses all possible values that can

be assigned to the gate variables and hence all possible normal queries and re-

sponses. Therefore, we should state this access control policy in abstract terms.

We replace the executed queries with their symbolic forms. We use the

parse tree of these symbolic queries as the security property of the gates. For

example, assume that the program under test, P, communicates with the table

personalInfo in a relational database. Moreover, suppose that the symbolic

query ”select * from PersonalInfo where ID=id” is stated in a database gate

of P. The parse tree of this query is depicted in figure 5. Thus, the formal

representation of the security property is stated as follows:

S = < select, {Ri ∈ PersonalInfo | Ri.ID = id}, C >

Athena detects SQL injections by comparing real query structure with the

normal one in the same way as described in [45]. For instance, in the mentioned

example, the query select * from PersonalInfo where ID=’1’ or ’1’=’1’; is reported

as SQL injection because its parse tree differs from the expected one.

There are also some SQL attacks which can be detected straightforwardly by

analysing the queries. For example, if a query such as ’drop table’ is sent from a

database gate which is permitted to send ’insert’, the proposed method detects

the attack. This kind of attack may be the result of parameter tampering or

SQL injection. Regardless of the attack origin, we can detect it using its effects

on the gate.
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FROM*

comparison_operator

select_list

expression_atom

WHERE

expression_atom

’id’

=

‘PersonalInfo‘

table_name

predicate

id_

SELECT

string_literal

table_sources

id_ full_column_name

predicate predicate

from_clause

constant

expression

query_specification

‘ID‘

table_source

table_source_item

Figure 5: The parse tree of the query ”SELECT * FROM PersonalInfo WHERE ID=id”

7.1.2. Query tampering

Another kind of injection attacks occurs when one of the query parame-

ters is tampered by the attacker and replaced with an unauthorized but well-

formed value. For example, suppose that fetching personal information from

the database requires the identification number of the person who assumed to

be logged in to the system. Replacing this number with a fake ID will cause

confidential information leakage. In this kind of exploitation, the structure of

malicious query is identical to the normal one. However, Athena can detect this

attack by using the direct condition set.

For example, figure 6 shows the gates and their communications for a sample

web application. The variable ’id’ in the query ’select * from PersonalInfo where

ID=id’ in gate G3 depends on the database response in gate G2. This dependency

is extracted from data flow analysis and is stated in the condition set C in the

security property of gate G3. In other words, the security property of G3 contains

Cdir = {id = G2.id}. Now, suppose that an attacker replaces the original id

with a fake one in the corresponding HTTP GET request and therefore accesses

the personal information of another person. Athena will detect this attack by
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G1

DB

User, Pass

Pf

Query(User, Pass)

Response (ID)G2

G3

Pf

Query(ID)

Response (Personal Info)

Figure 6: An example of SQL attack through parameter tampering

finding the difference between G2.id and G3.id.

7.2. XSS Attacks

XSS attacks are causing scripts to be executed on output gates. To detect

this type of attack, we determine whether the user is permitted to run scripts

in the output gate. Executing scripts in an output gate violates the security

property if that gate is not permitted to run scripts. Notice that we consider

only the input-dependent scripts in our XSS detection method. Thus, running

a consistent script which does not depend on any external variable will not be

reported as an exploit.

To check whether the gate is permitted to run scripts, we should investigate

the normal strings transmitted via that gate. A simple approach for XSS detec-

tion is to search for <script> tags. This approach cannot detect complex XSS

attacks. Thus, we have implemented a more accurate method using a javascript

engine.

We parse the output strings and produce their parse trees using Html-

Cleaner11. If the parse tree does not match with the normal one, the unmatched

11http://htmlcleaner.sourceforge.net
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point is investigated to check whether it contains Javascript. We also check all

attribute elements for Javascript. We use swt12 library to examine these strings.

The library contains a method that can detect whether a string is a Javascript

command.

For example, assume that the string <img src=”image.jpg”>Image</img>,

in which the image.jpg is a dependent string, is a normal string in an out-

put gate. Obviously, in the normal behaviour, scripts are not allowed to ex-

ecute in this gate. Suppose that the input javascript:alert(’XSS’) is entered

into an input gate and leads the output gate to produce the string <img

src=”javascript:alert(’XSS’)”>Image</img>. The parse tree of this string is

normal because it does not contain any unmatched script element. However,

the attribute value is a Javascript which is detected by the proposed method.

Generally, if the normal behaviour of a program does not allow users to

run dependent scripts in an output gate, the XSS attacks will be detectable.

However, it may be the case that the output gate is permitted to run some

scripts. For example, suppose that the normal behaviour of a program utilised

by the guest user allows him to run a specific script, X, in the output gate O.

Since we model the security properties of output gates by specifying whether the

user is permitted to run any arbitrary scripts, we cannot distinguish between

benign and malicious scripts. In other words, we suppose that executing any

script is allowed in gate O. Therefore, if a script rather than X is executed

in gate O, our model will not classify it as an attack. If someone insists on

detecting this specific kind of XSS attack, he should capture all normal scripts

in the gates. However, we believe that this idea will increase the number of

false positive alerts. Thus, we prefer to ignore detecting this specific rare type

of XSS attack instead of being confronted with numerous false positives.

Notice that the proposed method is not intended for detecting DOM-based

XSS attacks because (in contrast to stored and reflected types) they do not rely

on the payload embedded by the server in the response page. In other words,

12https://www.eclipse.org/swt
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“DOM-based XSS vulnerabilities can be executed without the server being able

to determine what is actually being executed13.”

7.3. Code Injections

If a program constructs a code segment using externally-influenced input, an

attacker may inject her code into the program. Code injection attacks may have

two consequences: deviation from the normal flow of the program and executing

a command that is not intended.

The first case is detectable by our model and is interpreted as a control

flow violation. The second case occurs when the attacker executes unexpected

system commands. Since there is a limited number of intended commands in

each gate, we suggest specifying all of them in the security property of the gate.

In other words, we use a white-list approach to detect this type of attack, in

contrast with XSS, where we used a black-list approach.

Following code snippet is a part of the ’CWE78 OS Command Injection console

readLine 01’ test case in Juliet test suite [43] for Java with a little modification

to save article space:

/∗ read user input from conso l e with readLine ∗/

try

{

readerInputStream = new InputStreamReader ( System . in , ”UTF−8” ) ;

r eade rBu f f e r ed = new BufferedReader ( readerInputStream ) ;

/∗ Input gate ∗/

data = readerBu f f e r ed . readLine ( ) ;

}

. . .

S t r ing osCommand = ”c :\\WINDOWS\\SYSTEM32\\cmd . exe /c d i r ” ;

/∗ Execution gate ∗/

Process p roce s s = Runtime . getRuntime ( ) . exec (osCommand + data ) ;

13https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_

(OTG-CLIENT-001)
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In this example, there is a straightforward path between the untrustworthy

input gate, ’readLine’, and the execution gate, ’exec’. This makes the program

vulnerable to code injections. However, we use a more restrictive approach to

decide whether a test case is an actual attack. We trace the normal behaviour

of the program and save all expected commands in the security property of the

execution gate. If a test case leads the program to execute a command that is

not included in the specified white-list, we notify analyser of potential attack.

Note that we exclude the constant parts of the executed string in the execution

gate. For example, if the only permissible commands in the execution gate are

’type manual.txt’ and ’dir’, the security property of the gate will be stated as

follows:

S = < exec, java.lang.Runtime.exec(arg0),

Cloc = {arg0 = type manual.txt ∨ dir} >

Since the dynamic analysis is intrinsically incomplete, some permissible com-

mands may be omitted from the white-list. Thus, it is possible that Athena

falsely detects a benign command as attack. However, since our framework is

flexible, one can relax the restrictions using regex. If the command options or

parameters are not important for the analyser, he can specify only the main

command in the security property of the gate. For example, instead of consid-

ering ’type manual.txt’ in the analysis, Athena can consider the regex ’type *’ as

the security property of the gate.

7.4. Access Control Violation

Since the security properties of gates describe how users can access the pro-

gram resources, the access control violation is detectable by Athena. To model

access control violations, it suffices to compare the expected user privileges with

the real accesses to the resources during the test.

For example, assume that reading the secret file F is permitted just to the

admin user from a specific gate of the program. The normal security property

of the program in this gate can be modelled as a triple < read, F,C >. An

30



access control violation will be reported if any deviation from this property

occurs. For instance, writing on F, or reading an impermissible file are some

kinds of detectable attacks. Another example of access control deviation may

be a privilege escalation of the guest user which can be modelled as a missed

property in P e
guest.

Since access control violation is a general category which encompasses vari-

ous kinds of attacks, it is not possible to explain it by a single example. However,

the following example demonstrates the overall picture of the detection mecha-

nism. Following code snippet is a part of the ’CWE 470 Unsafe Reflection console

readLine 01’ test case in Juliet test suite [43] for Java with a little modification:

St r ing data= ”” ;

. . .

/∗ read user input from conso l e with readLine ∗/

readerInputStream= new InputStreamReader ( System . in , ”UTF−8” ) ;

r eade rBu f f e r ed= new BufferedReader ( readerInputStream ) ;

data= readerBu f f e r ed . readLine ( ) ;

. . .

Class<?> tempClass= Class . forName ( data ) ;

Object tempClassObject= tempClass . newInstance ( ) ;

Assume that the only class which is instantiated in the normal behaviour of the

program is ’Testing.test’. The security property of the usage gate can be stated

as follows:

S = < Instantiate, java.lang.Class.forName(arg0),

Cloc = {arg0 = Testing.test} >

Any attempts to instantiate other classes will be reported as an attack. As

described in the previous subsection, we can use regex to relax the restrictions.

7.5. Buffer Overflow

A buffer overflow occurs when an allocated buffer in the memory is over-

written. To detect memory attacks such as buffer overflows, we should check
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the buffer borders and investigate whether the boundaries are exceeded. We de-

fine memory gates as program statements that write into buffers on the stack.

For example, the statement ’strcpy(dest, src)’ in the C programming language

writes the ’src’ string on the ’dest’ buffer in the stack and therefore should be

considered as a memory gate. The security property of a memory gate should

include the destination buffer length.

The general security policy on the buffer size is as follows: the length of the

buffer where we want to write to should be larger than the size of reading data.

For example, assume that the following code snippet is a part of the program

under test written in C language14

char ∗ dest ;

char ∗ s r c ;

int dynamicVar ;

//Get dynamicVar from s td in

. . .

des t = mal loc ( dynamicVar ) ;

. . .

s t r cpy ( dest , s r c ) ; //Memory gate

We can declare the security property of the mentioned memory gate as follows:

S = < Write, strcpy(arg0, arg1),

Cloc = {sizeof(arg0) ≥ sizeof(arg1)} >

We can extract the size of buffers ’dest’ and ’src’ using logger aspects and re-

port the attack if the above security property is violated. Notice that we do

not develop this mechanism in our implementation because Java programming

language checks the bounds and hence is not vulnerable to this kind of attack.

However, as mentioned above, it is theoretically possible to detect the attack.

14Since the Java has array bounds checking, we explain this subsection by C code.
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7.6. Path Violation Attacks

Path violation attacks are the attacks in which the attacker deviates from

normal execution or navigation path of the program. Forceful browsing, work-

flow bypass [46], and some kinds of logical attacks [47] are common forms of

path violations. These attacks are detectable by Athena because the deviation

from normal paths is interpreted as an attack. For example, suppose that the

normal navigation of a website is as follows: user-login→ adding some products

on shopping cart→ calculating the tax→ finalizing the purchase. If a test case

bypasses the tax-calculation page, the logical attack will be reported.

Obviously, it is not possible to claim that all path violations are security

breaches. For instance, in the mentioned example, if the test case is represen-

tative of the benign user who adds a product to his shopping cart and tries to

buy it in his future login, it will be incorrectly reported as an attack. Athena

is misled because the benign path, login→ open the shopping cart→ calculate

the tax→ finalize, is not modelled in the training phase. Although this path is

not modelled in the normal behaviour, it does not violate any security policies.

The solution to mitigate this problem is to increase the precision of the training

phase by learning all intended use case scenarios.

8. Practical Evaluation

In this section, we verify whether Athena can be used in real applications. We

demonstrate that Athena is capable of modelling real applications and detecting

actual attacks.

We use our method to extract security policies of four deliberately insecure

web applications: Webgoat15, Security Shepherd16, Insecure Web App17, and

mngoat18. They have different levels of complexity and use various technolo-

gies such as AngularJS, H2 and MySQL databases, and the Spring framework.

15https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
16https://www.owasp.org/index.php/OWASP_Security_Shepherd
17https://www.owasp.org/index.php/Category:OWASP_Insecure_Web_App_Project
18https://github.com/mcgyver5/mngoat
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Table 1 shows the number of files and lines of code (LOC) in each application.

Obviously, web applications include HTML, JSP, and XML files. However, we

counted only the Java files because our current implementation does not support

other languages.

Our test platform was a 2.20GHz Intel Core i7 machine running Windows

7 with 8GB RAM. We ran Athena on this platform and produced the nor-

mal model for each test application. To determine the maximum possible size

(number of nodes and edges) of the extracted models, we assumed that all paths,

except the exceptions, are normal. The last two columns of table 1 show the

number of nodes and edges of the extracted models, respectively. Moreover, the

fourth column of the table demonstrates how long it took Athena to produce

the models.

Table 1: Summary of experimental evaluation

Web Application #Files (Java) LOC Time (Sec.) #Nodes #Edges

Webgoat 189 25480 49.7 4583 5331

Security Shepherd 144 16071 37.1 2861 3825

Insecure Web App 14 629 8.4 167 149

mngoat 49 2126 5.3 461 344

To evaluate whether it is possible to use Athena for detecting real attacks,

we examined the mentioned web applications using SQL injection and XSS at-

tacks. We chose these types of attack because they have been the most common

and the most common severe web application vulnerabilities based on the re-

cent survey of Homaei and Shahriari [44]. XSS makes up 13 per cent of all

vulnerabilities registered on the National Vulnerability Database (NVD). SQL

injection encompasses 20 per cent of the most severe vulnerabilities and about

9 per cent of all vulnerabilities.

We used the proposed methods in subsections 7.1.1 and 7.2 to inspect the

mentioned applications for SQL injection and XSS vulnerabilities. As specified

in section 4, our implementation is capable of performing some analysis on the
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logged messages. These include, but are not limited to parsing SQL queries

and assessing whether HTML strings contain Javascript. Thus, our method is

capable of examining gate messages for SQL injections and XSS attacks.

Since we examine deliberately insecure web applications, we know which

pages are vulnerable to SQL injection and XSS attacks. Thus, in the training

phase, we input normal strings into these pages. By normal string, we mean

the one that does not lead to an attack, SQL injection or XSS in this context.

We utilised Selenium 19 WebDriver and ngWebDriver 20 to automate the testing

process. We tested the applications using the suspicious input strings introduced

by wfuzz 21 web application fuzzer. This tool identifies two ”wordlists” for SQL

injection and XSS testing. These lists contain 125 and 39 suspicious strings

respectively.

It should be noted that generating test cases is beyond the scope of the

paper. The main point in choosing test data is to be unbiased. In other words,

we should not intentionally choose the test cases that decrease the false rates or

increase the true ones. Since we used an input list that is provided by a third

party application, wfuzz, we hope that the input selection process would not

bias the results of the study.

For each application, we repeated the testing process twice. First, we checked

the application responses to specify which strings can really exploit the appli-

cation. Secondly, we used Athena to perform the task automatically. The

comparison between the results of the first and second tests demonstrates the

capabilities of Athena in detecting attacks. Table 2 shows the testing results.

For example, the results show that ten strings, out of 125 ones, can exploit

Webgoat SQL injection course. Athena identified all examined SQL injection

attacks without any false alarm. In other words, Athena detected these attacks

with the 100% detection rate and the 0% false negative and positive rates.

19http://www.seleniumhq.org
20https://github.com/paul-hammant/ngWebDriver
21https://github.com/xmendez/wfuzz

35

http://www.seleniumhq.org
https://github.com/paul-hammant/ngWebDriver
https://github.com/xmendez/wfuzz


Table 2: Accuracy of attack detection mechanisms

Web Application
SQLi XSS

#Attacks #Detected #False alarms #Attacks #Detected #False alarms

WebGoat 10 10 0 9 9 0

Security Shepherd 8 8 0 9 9 0

Insecure Web App 11 11 0 15 14 0

mngoat 12 12 0 22 0 0

There are two points in table 2 need to be further discussed. First, there

exists an XSS attack on Insecure Web App that was not detected by our

tool. The string that causes the attack is ’%3CIFRAME %20 SRC= javascript:

alert(%2527XSS%2527)%3E%3C/IFRAME%3E. This string results in producing

<IFRAME SRC= javascript: alert(%27XSS%27)></IFRAME> in the output

gate. Although Athena detects the mismatch between the normal and the at-

tack parse trees, she assumes that the javascript will not be validated by real

browsers. The reason for this error is that the swt widget that we use to eval-

uate javascript cannot detect the string javascript:alert(%27XSS%27) as a valid

javascript. Although it can handle the quotation marks, it cannot interpret the

%27 character correctly. Briefly, the failure to detect the attack is due to the

inaccuracy of the widget.

Secondly, our implementation cannot detect XSS attacks on mngoat program

because there are no output gates in the Java files. The outputs are generated

in .jsp files at the client side. Thus, our tool cannot capture them. Note that

this is not the weakness of the framework. Instead, the reason for this issue

is that the developed tool does not support .jsp analysis in its current version.

As mentioned in section 5, our implemented tool analyses Java files. Thus, it

cannot examine the programs that are developed in other languages.

9. Discussion

There are various approaches to construct test oracles. Barr et al. [8] have

classified test oracle approaches into four categories: specified, derived, implicit,
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and no test oracles. They have defined derived test oracle as an oracle that

“distinguishes a system’s correct from incorrect behaviour based on informa-

tion derived from various artefacts (e.g. documentation, system executions) or

properties of the system under test”. Since our proposed method derives the or-

acle from source code and system execution, we can classify it under the derived

test oracle category. This method would be an invaluable strategy, especially in

the absence of well-documented security requirements and policies.

In section 7, we explained how Athena detects various kinds of attacks.

Generally speaking, all type of attacks that violate some security properties or

deviate from normal control flows would be detectable if sufficient details are

available in the model driven from our framework. However, there are some

kinds of attacks that Athena is unable to identify.

Attacks that simulate the exact normal behaviour of the program will not be

detected by Athena. In other words, if the attacker actions and normal program

behaviour are identical, it will be impossible to distinguish between normal and

abnormal behaviour. For example, Cross-Site Request Forgery (CSRF) and

password guessing are not detected by this method.

Moreover, Athena is incapable of testing the cryptographic properties. We

assume that the random and secret variables are cryptographically secure. This

will lead to the failure to detect some cryptographic attacks. For example, if

the pseudo-random number generator function does not work correctly, a non-

random number may be generated and used as a nonce in the communication.

Note that the aim of the framework is not to detect all kinds of attacks,

but rather the software attacks that occur because of poor implementation. If

some security policies are misunderstood in the software design phase and, in

consequence, an attack occurs, Athena cannot detect it. For example, if the

least privilege policy is not developed correctly in the design phase, Athena

cannot identify the relevant exploits in the implemented software. For instance,

if the software designer falsely believes that a user needs to have an access

privilege on a resource, the test team will also authorise this access. In other

words, Athena will infer an unrequired right during the training phase. It leads
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to learn imprecise security properties and therefore the security test oracle may

fail to classify test cases correctly. Obviously, it is not the disadvantage of

Athena, but rather is the result of poor software design.

In addition to the undetectable attacks, we should discuss the accuracy of

identifying detectable attacks. The exploit detection rate may depend on the

accuracy of the training data, in some cases. The dynamic analysis is intrinsi-

cally incomplete. Since we use dynamic analysis to extract some parts of the

security test oracle, the derived model may be incomplete. In other words, we

cannot ensure that all normal behaviour of the program is modelled. For ex-

ample, since the exceptions are not represented in the normal operation of the

program, Athena considers them attacks. Thus, there may exist some cases in

which the test results fail while the system under test is secure.

To achieve better results, it is also possible to give feedback to the analyser.

For example, we can identify the statements that are partially covered or not

covered in the learning phase. The analyst may classify these statements as

security or regular checks. If the conditional statement is classified as a regu-

lar (non-security) check, all of its outgoing edges and also all of its successors

that have single output will be labelled covered. However, we do not implement

this interactive approach because the analyst may not have enough informa-

tion about all of the statements and conditions in the code and thus he may

incorrectly classify the node.

Finally, we should discuss the modelling cost. To construct the security test

oracle for a program, we should examine the gates. The modelling cost depends

on the number and type of the gates considered in the analysis. The fewer gates

the analyser chooses, the fewer program slices Athena investigates. Further-

more, to detect different attacks, different kinds of information are needed to be

gathered from the source code and the graphs. Thus, the cost of creating STO

will differ based on the analysis purpose. For example, detecting all kinds of

memory errors may need taking expensive stack snapshots. However, to iden-

tify directory traversal attack, it suffices to specify whether the file access is

permitted based on the training data.
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10. Conclusions and Future Work

There are several research challenges in software testing including test oracle

automation and non-functional property testing [9]. This article tried to take

a step towards solving these two research challenges. We proposed a security

test oracle framework, Athena, which is capable of specifying various security

policies and identify software vulnerabilities. We suggested a method to ex-

tract the oracle from source code and normal interactions between program and

environment. Thus, it is not required to access the design-level documents of

the software. We implemented the proposed framework and provided analysers

with a set of capabilities that can be used to specify different security policies.

Investigating common types of attacks demonstrated the flexibility of Athena.

We applied the framework to detect various attacks as diverse as SQL injec-

tion and path violation. Moreover, we illustrated the usefulness of Athena by

analysing actual applications and identifying real attacks.

As future work, we plan to translate security properties and normal naviga-

tion paths to a checkable form such as code or assertions and check them during

execution. As a result, we will be able to embed a tailored software firewall

in the program and protect the application from exploitation. We also suggest

combining Athena with a monitoring system to detect attacks. Moreover, we

intend to use the test oracle to conduct test case generation. It would open

a new potential direction in security vulnerability analysis, automatic exploit

generation, and automated software repair.
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